- Databases
- Spacetime database
- de Sitter
de Sitter
1. History
2. Topology
de Sitter space has the topology $\mathbb{R}\times S^{n-1}$.
3. Metrics and coordinates
Static coordinates
$$ds^2 = -(1 - \frac{1}{3} \Lambda r^2) dt^2 + \frac{1}{1 - \frac{1}{3} \Lambda r^2} dr^2 + r^2 (d\theta + \sin^2 \theta d\varphi^2)$$
Flat slicing coordinates
$$ds^2 = -d\tau^2 + e^{2\tau / \ell} (d\rho^2 + \rho^2 (d\theta + \sin^2 \theta d\varphi^2))$$
Open slicing
Closed slicing
Global coordinates
$$ds^2 = -d\tau + \ell^2 \cosh^2 (\frac \tau \ell) d\Omega_3^2$$
4. Tensor quantities
5. Symmetries
6. Stress-energy tensor
7. Curves
8. Equations
9. Causal structure
10. Asymptotic structure
11. Energy conditions
12. Limits and related spacetimes
13. Misc.
Bibliography